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This document provides further information on the experimental techniques, the self-consistent
theory for backscattered intensity, and the procedure used to fit the predictions of this model to
experimental data. Representative values of the best-fit parameters are also presented and discussed.

EXPERIMENTAL METHOD

In this section, we give additional details on the
backscattering experiments that we performed to demon-
strate a robust new approach for investigating 3D Ander-
son localization. As emphasized in the letter, time- and
angle-resolved backscattering experiments have several
important advantages compared with the transmission
measurements used in previous studies, enabling inves-
tigations of Anderson localization all the way through
any mobility gap. Access to the deeply localized regime,
where ξ << L, obviously requires that the signals emerg-
ing from the medium be large enough to be measurable.
In transmission, this requirement is difficult, if not impos-
sible, to satisfy. In previous works, transmission through
the samples was so greatly reduced inside the transmis-
sion dips (where a mobility edge was demonstrated) that
measurements were not possible all of the way through
the mobility gap, the most deeply localized regime was
inaccessible, and the upper mobility edge could not be
identified [S1, S2]. By contrast, the reflection geometry
that we employ here capitalizes on the distinct advantage
that backscattered ultrasound is not affected by this lim-
itation, allowing arbitrarily thick samples to be studied,
and a complete investigation of the entire localization
regime to be carried out. In addition, backscattering
measurements are independent of sample thickness over
a significant range of times before the detected signals
have been able to reach and travel back from the far side
of the sample. This not only simplifies the interpreta-
tion of the current backscattering measurements but will
also enable future investigations of critical behaviour in
which finite size effects can be eliminated. It is these con-
siderations that motivated the design of our backscatter-
ing experiments, and have led to the significant progress
in the investigation of 3D Anderson localization that is
highlighted in the conclusions of our letter.

Given these advantages of backscattering measure-
ments, one might wonder why we have focused on dy-
namic coherent backscattering rather than near-field de-
tection of the time-dependent transverse intensity pro-

file at the surface of the sample. Such dynamic trans-
verse profile measurements would be expected to give
the same type of (absorption-free) information on local-
ization as was obtained previously in transmission [S3],
but with all of the additional advantages of the reflection
geometry. While this is true in principle, we found that
practical limitations preclude effective measurements of
this type in reflection. Specifically, near-field measure-
ments in reflection are extremely problematic because the
placement of transducers at the sample surface leads to
spurious reflections between the generator, sample sur-
face, and detector. In addition, the generation and de-
tection transducers get in the way of each other, making
measurements difficult and data for some positions sim-
ply inaccessible. We also tried making measurements of
the near-field transverse profile through the use of ultra-
sonic arrays in direct contact with the sample surface,
but these were plagued by crosstalk between transducer
elements during emission, which interfered with the de-
tection of the interesting signals that have penetrated in-
side the sample. In addition, placing an array in contact
with the sample complicates the boundary conditions.
In contrast, coherent backscattering enables the spatial
Fourier transform of the entire spatial intensity profile
to be measured in the far-field with a single ultrasonic
transducer array, making it the perfect tool to investigate
the growth (or not) of the transverse width in reflection.

The backscattering experiments, as well as the trans-
mission measurements used to corroborate the results for
sample L1, were carried out by immersing water-proofed
samples and transducers in a large water tank. The pores
between the brazed beads in the samples were held under
vacuum, thus ensuring that ultrasonic transport inside
the sample was confined to the elastic bead network, and
that both backscattering and transmission experiments
were performed under the same conditions (apart from
placement and type of ultrasonic emitters and detectors
used). Thus, although both longitudinal and transverse
elastic waves are present inside our solid samples, the
emitted and measured signals for all experiments have
longitudinal polarization (acoustic waves in water).
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In backscattering, the response matrix was measured
for sample L1 (L2) using 64 (128) elements of a linear
ultrasonic array with a central frequency of 1.6 (1.0)
MHz, capable of emitting/detecting signals for a fre-
quency range of 0.6 - 1.9 MHz (0.5 - 1.4 MHz). Ut-
most care was taken to ensure that all possible contri-
butions due to stray background signals were eliminated
from the backscattering data by systematically search-
ing for such contributions, removing them where possi-
ble, and analysing the data only over the range of times
where valid data, uncontaminated by stray signals, were
detected. For example, careful placement of the array
and sample, the design of a support system for the sam-
ple that eliminated spurious reflections, as well as checks
with (temporarily inserted) reflecting or opaque objects,
were used to ensure that effects from the edges of samples
were negligible. The use of short pulses and a large water
tank ensured that reflections from the sides of the tank
arrived after the backscattered signals from the sample.
The data were analyzed only for times greater than 40
µs (to discard any vestiges of specular reflections from
the sample surface and single scattering, which might
have persisted despite the sophisticated filtering tech-
nique that were used to remove these contributions [S4])
and for times less than 200 (120) µs for L1 (L2) (to reject
contributions from echoes between the array and sam-
ple). Similar care was employed to ensure that only mul-
tiply scattered signals from inside the sample were anal-
ysed for the transmission measurements on L1 (see Refs.
[S1, S2] for details on similar transmission experiments).

For configurational averaging of the backscattering
data, the array was translated parallel to the sample,
acquiring response matrices at 302 (66) different posi-
tions. The distance between the array and sample was
182 (136) mm, so that the backscattering experiments
were carried in out in the far field, which for diffuse waves
is defined by the condition a ≫

√
DBt (a is the sample-

array distance, DB is the Boltzmann diffusion coefficient,
t is time). In the diffusive regime (e.g., 1.65 MHz for
sample L1), DB for sample L1 has been measured to be
approximately 0.7 mm2/µs, and the longest times exper-
imentally available to us are 210 µs, so the approxima-
tion of a = 182 mm ≫

√
0.7× 210 ≈ 12 mm is valid. In

the localized regime, the dynamic spreading of the dif-
fuse halo is less, so that the far-field limit is even better
respected.

After filtering the recurrent scattering contribution,
the bandwidth-limited time-dependent CBS profiles
R(θ, t) were extracted from the conventional multiple
scattering contribution to the response matrix. The dy-
namic CBS profiles were normalized to eliminate the in-
fluence of absorption by dividing R(θ, t) by R(0, t), since
at time t the effect of absorption on the numerator and
denominator of this ratio is the same, and therefore can-
cels. Typical results near the lower mobility edge are
shown in Fig. S1, where the data are compared with the-

oretical predictions as described in the two sections.

SELF-CONSISTENT THEORY FOR DYNAMIC

COHERENT BACKSCATTERING

Our theoretical model to describe the dynamic coher-
ent backscattering (CBS) of ultrasound is based on the
equations of self-consistent (SC) theory of Anderson lo-
calization with a position- and frequency-dependent dif-
fusion coefficient D(r,Ω) as derived in Ref. [S5]. In these
equations, the scattering mean free path ℓ should be re-
placed by ℓ∗B — the transport mean free path in the ab-
sence of localization effects — to account for the scatter-
ing anisotropy of our samples (ℓ∗B > ℓ).

To define the mobility edge (ME) and the localization
length, we first analyze SC equations in the infinite 3D
medium where D becomes independent of position. For
the stationary (Ω = 0) diffusion coefficient we obtain

D = DB

[

1− 3µ

(kℓ∗B)
2

]

, (S1)

where DB is the (Boltzmann) diffusion coefficient in
the absence of localization effects and an upper cut-off
qmax
⊥

= µ/ℓ∗B (with µ ∼ 1) was introduced in the inte-
gration over the transverse momentum q⊥ = {qx, qy} in
order to regularize the integral. Here we break the sym-
metry between q⊥ and qz to anticipate the experimen-
tal geometry of a disordered slab perpendicular to the z
axis. A ME of the Anderson transition at kℓ = (kℓ)c cor-
responds to µ = 1

3
(kℓ)2c(ℓ

∗

B/ℓ)
2. In the localized regime

kℓ < (kℓ)c, an analytic solution of the equations of SC
theory can be obtained for a point source emitting a short
pulse at r

′ = 0 and t′ = 0, in the long-time limit. We
obtain an intensity Green’s function

C(r, r′, t → ∞) =
1

4πξ2|r− r
′| exp (−|r− r

′|/ξ) , (S2)

where the localization length is

ξ =
6ℓ

(kℓ)2c

(

ℓ

ℓ∗B

)

p2

1− p4
, (S3)

and p = kℓ/(kℓ)c. To describe the experimental data, we
solve the equations of SC theory in a slab of thickness L
with boundary conditions derived in Ref. [S5], where the
extrapolation length

z0 =
2

3
ℓ∗B

1 +R

1−R
(S4)

depends on the internal reflection coefficient R. To this
end, we Fourier transform the SC equations in the trans-
verse plane ρ = {x, y} and discretize the remaining or-
dinary differential equation for C(q⊥, z, z

′,Ω) on a grid
for z ∈ [0, L] [S6]. A sufficiently fine discretization is also
introduced for q⊥ and Ω, and the resulting system of lin-
ear equations with a tridiagonal matrix of coefficients is
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solved numerically using a standard routine zgtsl from
LAPACK library [S7] for D(z,Ω) = DB . A new value of
D(z,Ω) is then obtained from the return probability

C(r, r′ = r,Ω) =
1

2π

qmax

⊥
∫

0

dq⊥q⊥C(q⊥, z, z
′ = z,Ω), (S5)

and the solution is iterated until convergence, i.e.,
D(z,Ω) does not change by more than a very small
amount, typically less than (5x10−5)%, from one itera-
tion to the next. Transmission and reflection coefficients
T (q⊥,Ω) and R(q⊥,Ω) are then calculated as

R(q⊥,Ω) = D(z,Ω)
∂

∂z
C(q⊥, z, z

′ = ℓ∗B ,Ω)

∣

∣

∣

∣

z=0

(S6)

and similarly for T (q⊥,Ω). We obtain the time-
dependent intensity profiles in transmission T (ρ, t) and
reflection R(ρ, t) by a double inverse Fourier transform of
T (q⊥,Ω) and R(q⊥,Ω), respectively. The dynamic CBS
profile R(θ, t) = R(q⊥ = k0 sin θ, t) follows from the ob-
servation that the CBS shape is given by the Fourier
transform of the ‘diffuse intensity halo’ at the sample
surface [S8].

FITTING SELF-CONSISTENT THEORY TO

EXPERIMENTAL BACKSCATTERING DATA

The theory for R(θ, t) developed in the previous sec-
tion is valid in the far field, where sin θ = q⊥/k0. Here
k0 = 2πf/v0 and v0 ≈ 1500 m/s is the speed of sound in
water. This is the appropriate limit for comparing with
the experimental data, since our backscattering experi-
ments are performed in the far-field (discussed in the first
section of this Supplemental Material).
Near the localized regime, backscattered waves may

spend a long time in a thick sample without reaching
the far side. This means that for a range of times less
than twice the typical time for waves to cross the sam-
ple, which can be estimated from the peak in the time-
dependent transmission, the CBS effect is not sensitive
to sample thickness. This is significant because calcula-
tions for very thick samples can be prohibitively time-
consuming, so the modeling of backscattering in the lo-
calized regime is more convenient when there is no ex-
plicit dependence on sample thickness. In other words,
theory for backscattered waves from a thin sample may
also be used for a thicker sample, provided that the range
of times investigated is short enough. Here we calculate
SC theory for sample L1 and can compare it to experi-
mental CBS profiles of both L1 and L2.
Most input parameters for the calculation of SC the-

ory were determined from measurements performed in
separate experiments and could thus be fixed in the fit-
ting procedure. These (fixed) parameters are: scatter-
ing mean free path ℓ = 0.9 mm, reflection coefficient

R = 0.67, and wave vector k = 2πf/vp, with phase ve-
locity vp = 2.8 mm/µs, giving kℓ = 2.7 for f = 1.2 MHz.
The remaining parameter, the transport mean free path
l∗B = 4 mm, was determined from SC fitting of transverse
confinement (transmission) data from sample L1.

The most important parameter involved in SC theory
calculations of R(θ, t) in the vicinity of an Anderson tran-
sition is the localization (correlation) length ξ. As this
parameter is unknown a priori, theoretical predictions for
R(θ, t) are calculated for a large range of ξ values from
the diffuse/subdiffuse regime to the localized regime (and
back again). These values of ξ are determined from kℓ
and its critical value at the transition (kℓ)c using Eq.
(S3), with kℓ fixed at the experimentally estimated value
for f = 1.2 MHz. For each frequency f of experimental
data, the experimental CBS matrix R(θ, t) is fitted with
every theory set. All fits are least-squares comparisons
between the 2D matrices from experiment and theory,
R(θ, t), using the reduced χ2 to determine the best-fit
values of ξ. All times and θ values are fit simultaneously.
This fitting procedure was performed with Wavemetrics
software IGOR Pro. By finding the best-fit theory set
for each f , the frequency-dependence of the localization
(correlation) length ξ(f) was determined. This, in turn,
enabled the locations of the two MEs, fc1 and fc2, to be
determined (these are the frequencies where ξ diverges).

Representative fit results for both samples are shown
in Fig. S1, showing the quality of the fits in the subd-
iffuse regime at a frequency below the first localization
transition [Fig. S1(a),(d)], at the first mobility edge [Fig.
S1(b),(e)], and in the mobility gap [Fig. S1(c),(f)]. In all
cases, the experimental data are well-described by the
SC theory: the narrowing of CBS profiles with time is
reduced as the ME is reached [Fig. S1(b),(e)], and in the
localized regime CBS profiles change even less with time
[Fig. S1(c),(f)], with the width approaching a constant
at long times.

The Boltzmann diffusion coefficient DB was a free fit
parameter, yielding DB(f) after the entire fitting pro-
cess. For sample L1, DB ≈ 10 ± 7 mm2µs−1 below
1.24 MHz, and DB ≈ 5 ± 2 mm2µs−1 above 1.24 MHz
(from transmission and reflection measurements). The
frequency-dependence of DB(f) is supported by visual
inspection of the time-dependence of the transmitted in-
tensity in these regimes, and these values of DB are sim-
ilar to the results of previous measurements in similar
samples [S2, S3]. For sample L2, the fitting results gave
values of DB ranging from DB ∼ 13−61 mm2µs−1 below
1.24 MHz (peaking in the localized regime) and DB ∼ 9
mm2µs−1 above 1.24 MHz. However, for such a thick
sample as L2, the backscattering data are not very sen-
sitive to DB over the experimentally accessible range of
times, so that these estimates for sample L2 are not likely
to be very accurate, although they are still consistent
with surprisingly large values of DB , as has been found
for other samples in the localized regime. Such values
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FIG. S1. Self-consistent theory fits (solid lines) to experimental dynamic CBS profiles (symbols). Data shown are from samples
L1 (top) and L2 (bottom) for three different times, and for three different frequencies: (a),(d) 1.18 MHz in the subdiffusive
regime (correlation length ξ = 2.1± 0.2 mm for L1 and 3.2± 0.9 mm for L2); (b),(e) near 1.20 MHz at a ME (ξ diverges); and
(c),(f) 1.22 MHz in the localized regime (ξ = 12 ± 1 mm for L1 and 16 ± 3 mm for L2). Note that the horizontal scales are
different between (a,b,c) and (d,e,f), and that a different range of times is presented. It is also important to note that ξ should
not necessarily be the same for both samples at exactly the same frequency.
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FIG. S2. Diffusion theory fits (solid lines) to experimental dynamic CBS profiles (symbols). Data shown are from samples
L1 (top) and L2 (bottom) for three different times, and for three different frequencies: (a),(d) 1.18 MHz in the subdiffusive
regime, (b),(e) near 1.20 MHz at a ME; and (c),(f) 1.22 MHz in the localized regime. Since the fits shown in (c),(f) are much
worse than those in (a),(d), in Fig. S1(c),(f), and in Fig. 2 of the Letter, it is clear that the diffusion model does not give a
satisfactory description of the data in the localization regime.

imply anomalously large values of the energy velocity vE
[S3], motivating future work to seek a theoretical under-
standing of vE in the localized regime.
The only other fit parameter was the background in-

tensity level, which was also allowed to vary freely. For
both samples L1 and L2, and for almost all frequencies,
best fits gave a background of within 10% of the value

of 0.5 which would be expected after the removal of the
recurrent scattering contribution. This variation of the
background intensity results from the challenges of com-
pletely removing the recurrent scattering contribution,
especially at early times where recurrent scattering dom-
inates the backscattered intensity; by allowing the back-
ground intensity to be a free fit parameter, we were able
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to ensure that these background fluctuations did not de-
grade the reliability of our determination of the frequency
dependence of the localization (correlation) length.

COMPARISON OF BACKSCATTERING DATA

WITH A SIMPLE DIFFUSION MODEL

As has been shown previously (c.f. Figs. 2 and 3 of the
Letter), our experimental backscattering data show sig-
nificant deviations from the behaviour predicted by the
diffusion approximation. Since such deviations are often
used as ‘clues’ for where to search for Anderson localiza-
tion (as they are here), it is of interest to examine the
way in which the data diverges from conventional diffu-
sive wave behaviour, and the extent of such effects. Here,
we present a simple analysis which shows that our data
cannot be described by a theory that assumes a constant
diffusion coefficient, and that, in the regime which we
have identified as the Anderson localization regime, the
self-consistent theory provides a much better description
of the data than does the diffusion approximation.
To investigate whether the diffusion approximation can

be applied to our data, we fit the experimental CBS
profiles R(θ, t) with a function of the form R(θ, t) ∝
exp(−Aθ2t), where A ∝ DB is a constant factor [S8]. In
this model, the CBS profiles must narrow at a constant
rate in time, and it is thus not an adequate description of
CBS in the localization regime, where the narrowing of
dynamic CBS profiles is slowed by the renormalization of
diffusion. In the conventional diffusive regime, (1.65 MHz
for sample L1), the simple diffusion model fits the data
very well at all times (c.f. Fig. 2(a) in the Letter). In the
range of frequencies in the mobility gap, as identified by
fitting the CBS profiles using the self-consistent theory
(see Fig. 4 of the Letter), the diffusion model does not
describe the data nearly as well. Representative results
for the fitting of this diffusion model to our experimental
dynamic CBS profiles are shown in Fig. S2. Clear devi-
ations of the data from conventional diffusion are visible
by eye, and are especially evident at larger angles and at
later times.
The quality of the theoretical fits to the experimen-

tal data can be estimated using the mean squared dif-
ferences between theory and experiment, i.e., χ2 =
∑

θ,t[R(θ, t)expt − R(θ, t)theory]
2/N , where N is the to-

tal number of points in R(θ, t). We define χ2
D for the

diffusive model fits to data, and χ2
SC for self-consistent

theory fits to data.
First, we compare χ2

D in the conventional diffusion
regime (fD = 1.65 MHz) to χ2

D in the entire frequency
range studied in this work (f = 1.17 − 1.27 MHz), for
data from sample L1. These quantities are denoted here
by χ2

D(fD) and χ2
D(f), respectively. We use the ratio of

these values to contrast how well the diffusion approxi-
mation fits our data in the diffusive regime at fD, com-

pared to the same quantity near and in the mobility gap.
Results are shown in the third column of Table S1. For
all frequencies, this ratio shows that the fits of the diffu-
sion model to our data near and in the mobility gap are
significantly worse than in the diffusive regime. In the
mobility gap, the diffusion model performs almost nine
times worse than it does in the diffusive regime.

Sample Frequency range (f)

〈

χ2

D(f)

χ2

D
(fD)

〉

f

〈

χ2

D(f)

χ2

SC
(f)

〉

f

L1
outside the mobility gap 2.8 1.3

inside the mobility gap 8.6 4.0

L2
outside the mobility gap – 3.2

inside the mobility gap – 4.2

TABLE S1. Ratios of χ2, for samples L1 and L2, as defined
in the text of this document. Values are averaged over dif-
ferent frequency ranges (as indicated in Fig. 4 of the main
manuscript): (1) outside (but near to) the mobility gap, and
(2) inside the mobility gap. Omitted entries are due to the
fact that data which exhibit conventional diffusive behaviour
are not, at this time, available for sample L2.

Table S1 also compares the goodness-of-fit of diffusion
theory to the experimental CBS profiles with that of self-
consistent (SC) theory for each sample over the entire
frequency range studied in this work. The ratio of χ2 ob-
tained for diffusion theory fitting to that obtained for SC
theory fitting, χ2

D/χ
2
SC, matches the trend seen by eye

in Fig. S2. From the averages of χ2
D/χ

2
SC, we see that

the diffusion theory fits are around 1.3 − 3 times worse
than SC theory fits outside the mobility gap, and 3 − 4
times worse inside the mobility gap. Thus, the SC the-
ory fits are clearly superior to the näıve fits to the simple
diffusion approximation for all frequencies investigated,
providing additional support for the analysis and conclu-
sions presented in the Letter.
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